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What is unsupervised meta-learning?
• Meta-learning aims to learn generalizable knowledge from prior experiences

• It can solve unseen, yet relevant tasks

Limitation of meta-learning: Task (episode) construction phase requires a lot of human-annotations
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What is unsupervised meta-learning?
• Meta-learning aims to learn generalizable knowledge from prior experiences
• Unsupervised meta-learning aims at meta-learning from unlabeled data
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What is unsupervised meta-learning?
• Meta-learning aims to learn generalizable knowledge from prior experiences
• Unsupervised meta-learning aims at meta-learning from unlabeled data

• Challenge: It requires to construct synthetic tasks to perform meta-learning without labels

Benefits of unsupervised meta-learning:
• Take the advantage of meta-learning: Generalized model across tasks, which adapt to new tasks quickly
• Mitigate the limitation of meta-learning: Task construction phase requires a lot of human-annotations
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Previous Approaches to Construct Synthetic Tasks
1. Assigning pseudo-labels [1-2]

• They utilize unsupervised representation or augmentations to assign pseudo-labels
• Limitation: Pseudo-labels are fixed during meta-training, and impossible to correct mislabeled samples
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Previous Approaches to Construct Synthetic Tasks
1. Assigning pseudo-labels [1-2]

• They utilize unsupervised representation or augmentations to assign pseudo-labels
• Limitation: Pseudo-labels are fixed during meta-training, and impossible to correct mislabeled samples

• Question: How to progressively improve a pseudo-labeling strategy during meta-learning?
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Previous Approaches to Construct Synthetic Tasks
2. Utilizing generative models [1-3]

• They generate synthetic tasks via generative models like VAE
• Limitation: Rely on the quality of generated samples which are cumbersome to scale into large-scale
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Previous Approaches to Construct Synthetic Tasks
2. Utilizing generative models [1-3]

• They generate synthetic tasks via generative models like VAE
• Limitation: Rely on the quality of generated samples which are cumbersome to scale into large-scale

• Question: How to construct diverse tasks without generative models?
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Method: Pseudo-supervised Contrast (PsCo)
Q) How to progressively improve a pseudo-labeling strategy during meta-learning?

Q) How to construct diverse tasks without generative models?

Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning
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Method: Pseudo-supervised Contrast (PsCo)
Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning

• 𝐱𝐱𝑖𝑖 𝑖𝑖=1
𝑁𝑁 : query samples for N-way K-shot task
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Method: Pseudo-supervised Contrast (PsCo)
Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning

• 𝐱𝐱𝑖𝑖 𝑖𝑖=1
𝑁𝑁 : query samples for N-way K-shot task

• Select appropriate K-shot support samples from momentum queue
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Method: Pseudo-supervised Contrast (PsCo)
Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning

• 𝐱𝐱𝑖𝑖 𝑖𝑖=1
𝑁𝑁 : query samples for N-way K-shot task

• Select appropriate K-shot support samples from momentum queue
• Supervised contrastive learning for pseudo-labeled tasks: Pseudo-supervised Contrast (PsCo)
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Method: Pseudo-supervised Contrast (PsCo)
Step 1: Compute query representations

• Use strong augmentations and online encoder
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Method: Pseudo-supervised Contrast (PsCo)
Step 2: Compute momentum representations of queries

• Use weak augmentations (to find an accurate pseudo-label) and momentum encoder
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Method: Pseudo-supervised Contrast (PsCo)
Step 3: Sample support representations from Queue via a matching algorithm

• Use momentum queue with matching algorithm (Sinkhorn-Knopp + Top-k sampling)
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Method: Pseudo-supervised Contrast (PsCo)
Step 3: Sample support representations from Queue via a matching algorithm

• Matching: How to sample supports that are semantically similar to queries while all samples are different?
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Method: Pseudo-supervised Contrast (PsCo)
Step 3: Sample support representations from Queue via a matching algorithm

• Sinkhorn-Knopp + Top-k sampling
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Method: Pseudo-supervised Contrast (PsCo)
Step 4: Meta-training a pseudo few-shot task via supervised contrastive learning
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Method: Pseudo-supervised Contrast (PsCo)
Step 5: Meta-testing with prototypes (i.e., average of support representations)
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Method: Pseudo-supervised Contrast (PsCo)
Step 5: Meta-testing with prototypes (i.e., average of support representations)
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Prototype of supports

Prediction scheme:
• Support representation:
• Query representation:

•

• No momentum network here



Method: Pseudo-supervised Contrast (PsCo)
Step 5: Meta-testing with prototypes (i.e., average of support representations)

Adaptation scheme for cross-domain problems:
• Treat each support sample as a query
• Freeze the backbone 𝑓𝑓𝜃𝜃 and optimize only the projector 𝑔𝑔𝜃𝜃 and the predictor ℎ𝜃𝜃
• E.g., 3-way 2-shot task
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Experiment: Standard Few-shot Classification
• PsCo achieves state-of-the-art performance on standard few-shot benchmarks

• Omniglot and mini-ImageNet
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Experiment: Cross-domain Few-shot classification
• PsCo achieves state-of-the-art performance on cross-domain few-shot benchmarks

• Small-scale experiments (Conv5 pretrained on mini-ImageNet)

23



Experiment: Cross-domain Few-shot classification
• PsCo achieves state-of-the-art performance on cross-domain few-shot benchmarks

• Large-scale experiments (ResNet-50 pretrained on ImageNet)
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Ablation studies
• All components are meaningful

• Architecture choices: Momentum network & predictor enhances pseudo-labeling quality online
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Ablation studies
• All components are meaningful

• Architecture choices: Momentum network & predictor enhances pseudo-labeling quality online
• Incorporating loss of self-supervised learning without additional cost helps to get better representation
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Ablation studies
• All components are meaningful

• Architecture choices: Momentum network & predictor enhances pseudo-labeling quality online
• Incorporating loss of self-supervised learning without additional cost helps to get better representation
• Sampling strategy: Sinkhorn-Knopp & Top-K sampling helps to sample proper few-shot tasks
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Ablation studies
• All components are meaningful

• Weak augmentation for 𝒜𝒜2 helps to find an accurate pseudo-label assignment matrix 𝐀𝐀
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Ablation studies
• New adaptation scheme is more useful in cross-domain

• It does not cause over-fitting by optimizing only the projector 𝑔𝑔𝜃𝜃 and the predictor ℎ𝜃𝜃
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Conclusion
We propose PsCo: an effective unsupervised meta-learning method for few-shot classification

• PsCo constructs diverse few-shot pseudo-tasks without labels 
utilizing the momentum network and the queue of previous batches in a progressive manner

• We demonstrate the effectiveness of PsCo under various few-shot classification benchmarks
• PsCo achieves state-of-the-art performance on standard few-shot classification benchmarks
• PsCo shows superiority on cross-domain few-shot classification benchmarks
• PsCo is applicable to a large-scale dataset

Thank you for your attention!
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