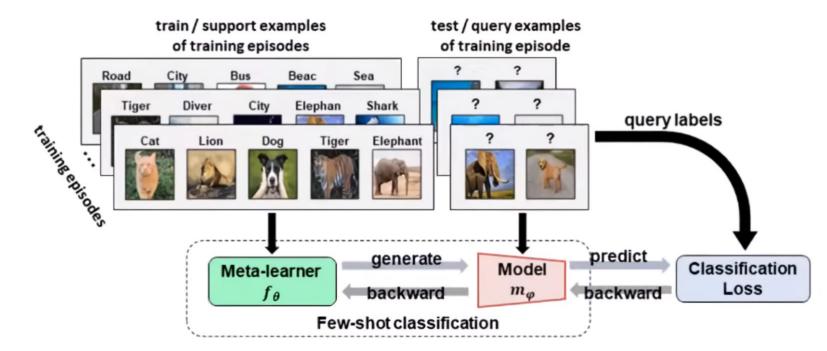


Unsupervised Meta-learning via Few-shot Pseudo-supervised Contrastive Learning

<u>Huiwon Jang</u>^{A*} Hankook Lee^{B*†} Jinwoo Shin^A

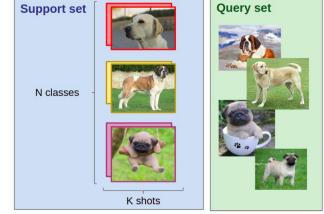

^AKorea Advanced Institute of Science and Technology (KAIST) ^BLG AI Research

*Equal contribution +Work done at KAIST

1

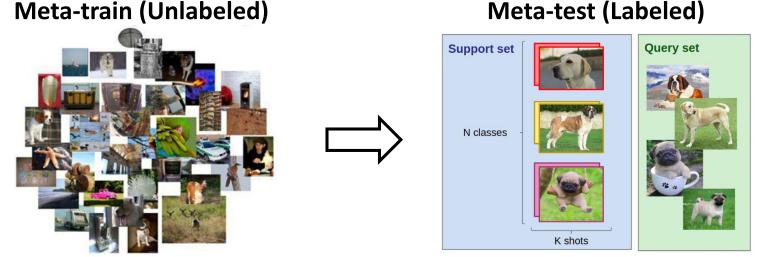
What is unsupervised meta-learning?

- Meta-learning aims to learn generalizable knowledge from prior experiences
 - It can solve unseen, yet relevant tasks


Limitation of meta-learning: Task (episode) construction phase requires a lot of human-annotations

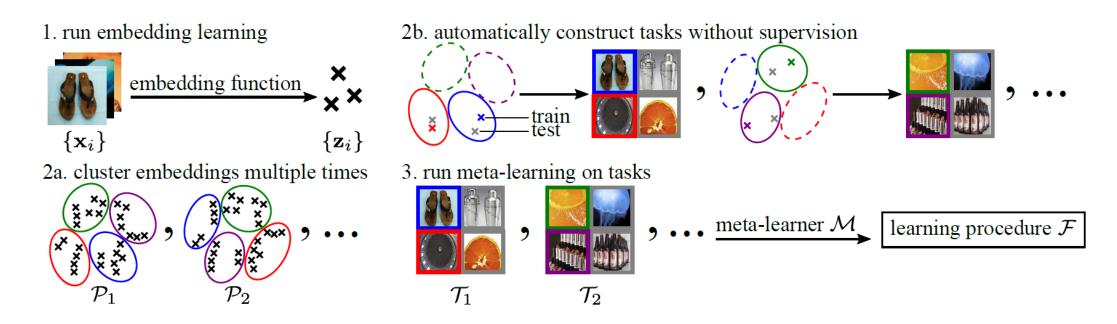
What is unsupervised meta-learning?

- Meta-learning aims to learn generalizable knowledge from prior experiences
- Unsupervised meta-learning aims at meta-learning from unlabeled data



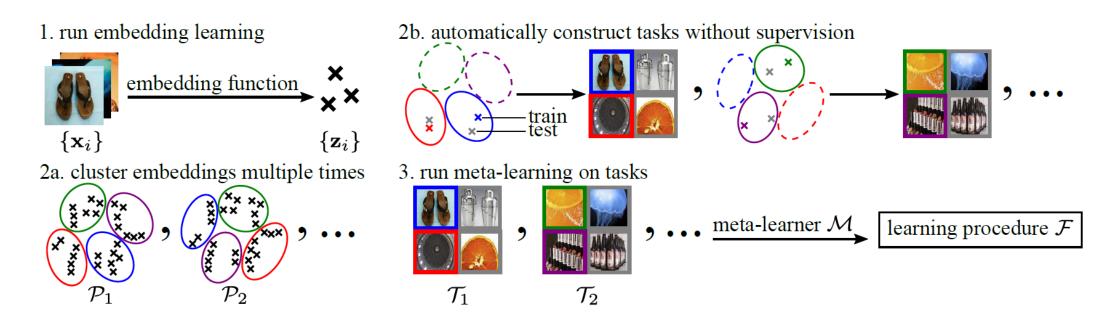
Meta-test (Labeled)

What is unsupervised meta-learning?

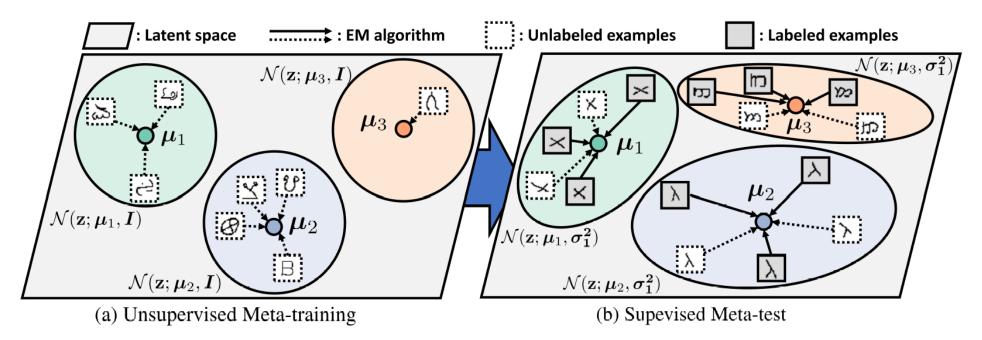

- Meta-learning aims to learn generalizable knowledge from prior experiences
- Unsupervised meta-learning aims at meta-learning from unlabeled data •
 - **Challenge**: It requires to **construct synthetic tasks** to perform meta-learning without labels

Benefits of unsupervised meta-learning:

- Take the advantage of meta-learning: Generalized model across tasks, which adapt to new tasks quickly
- Mitigate the limitation of meta-learning: Task construction phase requires a lot of human-annotations


- 1. Assigning pseudo-labels [1-2]
 - They utilize unsupervised representation or augmentations to assign pseudo-labels
 - Limitation: Pseudo-labels are fixed during meta-training, and impossible to correct mislabeled samples

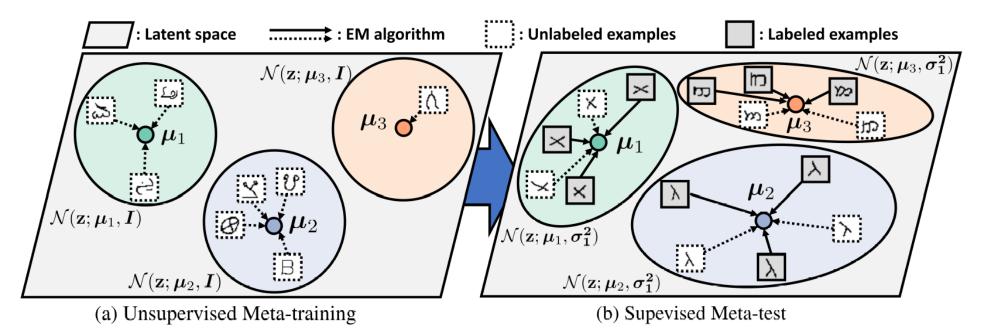
[1] Hsu et al., Unsupervised Learning via Meta-learning, ICLR 2019


[2] Khodadadeh et al., Unsupervised Meta-learning for Few-shot Image Classification, NeurIPS 2019

- 1. Assigning pseudo-labels [1-2]
 - They utilize unsupervised representation or augmentations to assign pseudo-labels
 - Limitation: Pseudo-labels are fixed during meta-training, and impossible to correct mislabeled samples

• Question: How to progressively improve a pseudo-labeling strategy during meta-learning?

- 2. Utilizing generative models [1-3]
 - They generate synthetic tasks via generative models like VAE
 - Limitation: Rely on the quality of generated samples which are <u>cumbersome to scale into large-scale</u>



[1] Khodadadeh et al., Unsupervised Meta-learning through Latent-space Interpolation in Generative Models, ICLR 2021

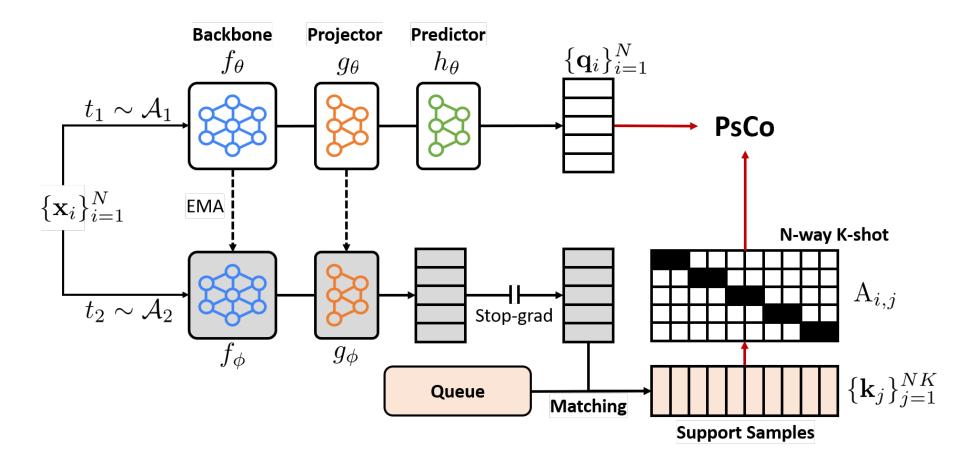
[2] Lee et al., Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-learning, ICLR 2021

[3] Kong et al., Unsupervised Meta-learning via Latent Space Energy-based Model of Symbol Vector Coupling, NeurIPSW-MetaLearn 2021

- 2. Utilizing generative models [1-3]
 - They generate synthetic tasks via generative models like VAE
 - Limitation: Rely on the quality of generated samples which are <u>cumbersome to scale into large-scale</u>

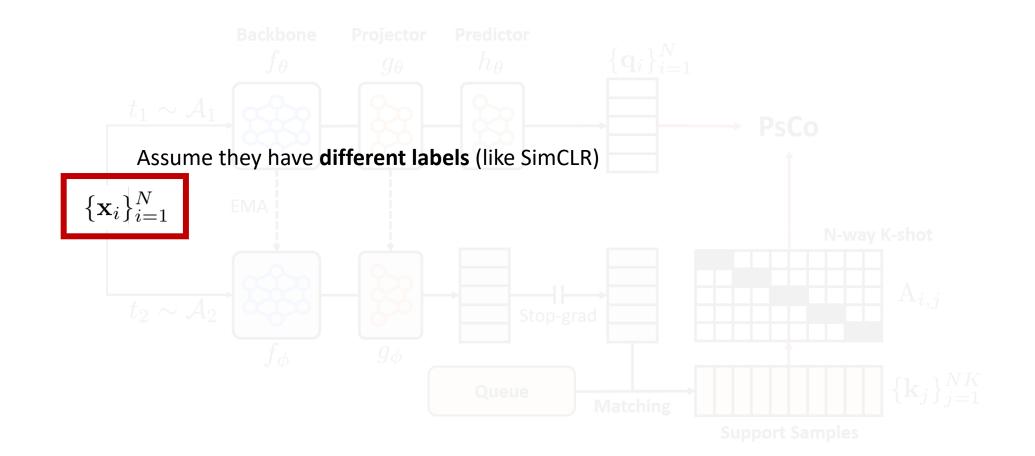
• Question: How to construct diverse tasks without generative models?

[1] Khodadadeh et al., Unsupervised Meta-learning through Latent-space Interpolation in Generative Models, ICLR 2021

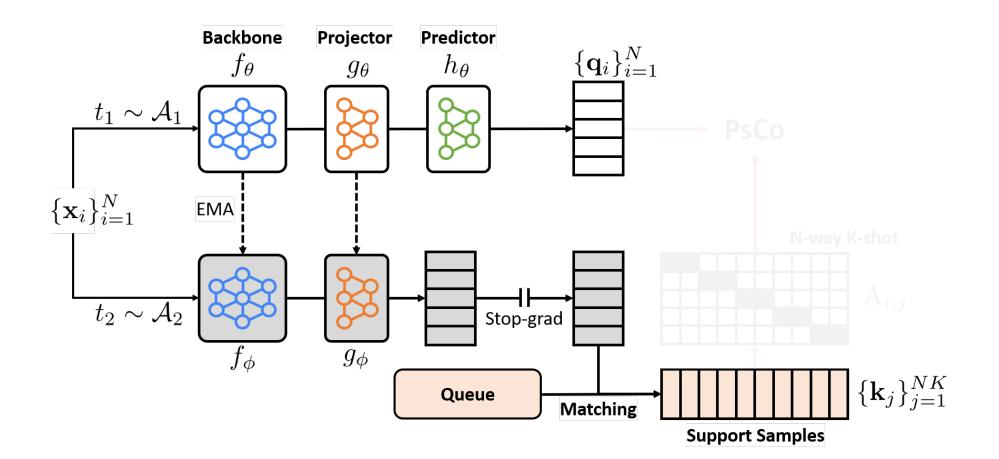

[2] Lee et al., Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-learning, ICLR 2021

[3] Kong et al., Unsupervised Meta-learning via Latent Space Energy-based Model of Symbol Vector Coupling, NeurIPSW-MetaLearn 2021

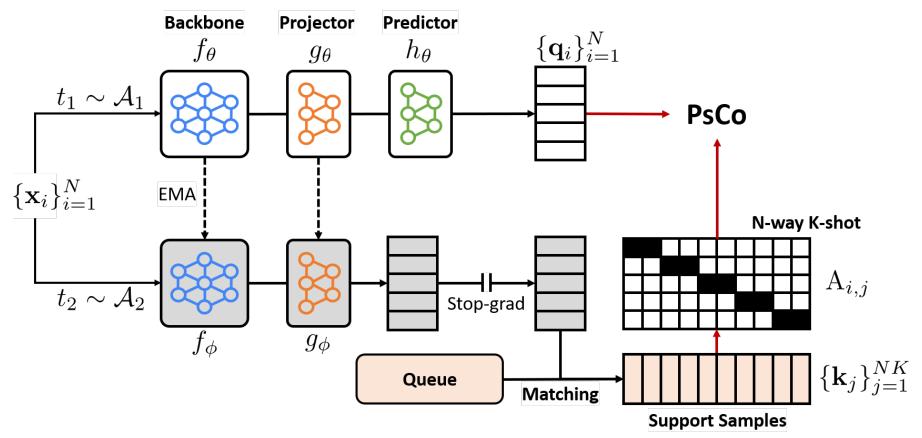
How to **progressively improve a pseudo-labeling** strategy during meta-learning?


How to **construct diverse tasks** without generative models?

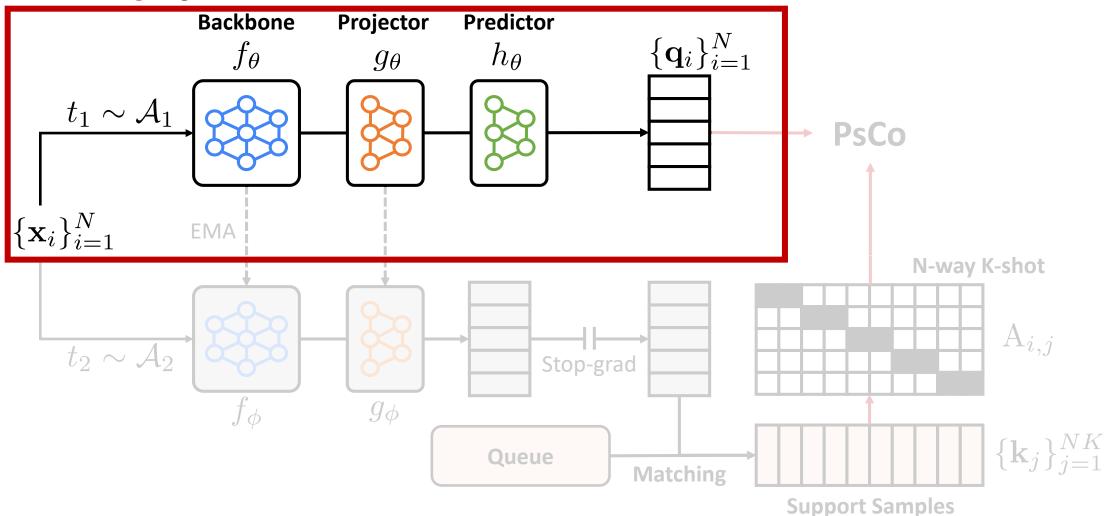
Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning


Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning

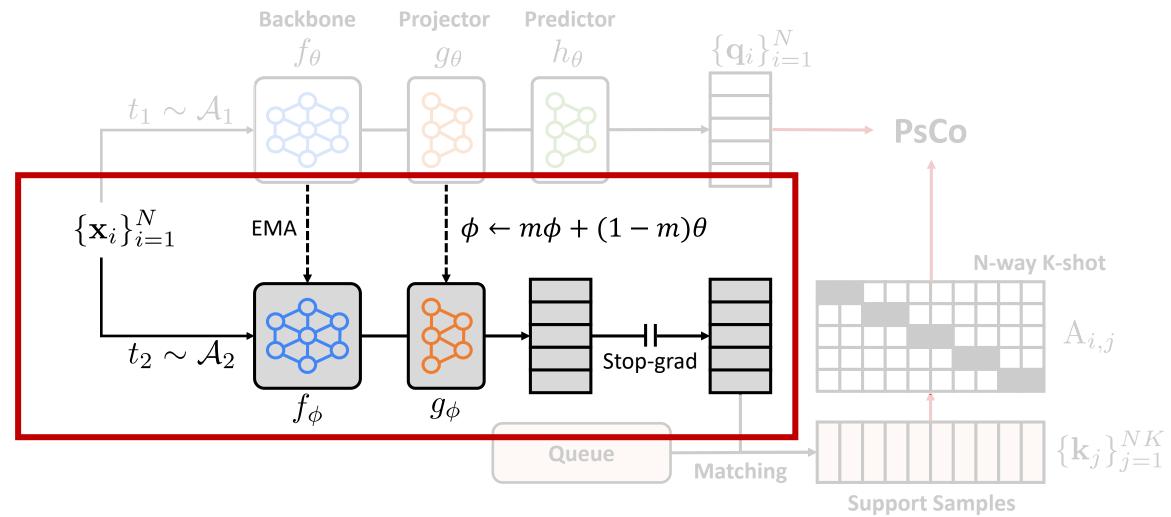
• $\{\mathbf{x}_i\}_{i=1}^N$: **query** samples for **N-way K-shot** task


Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning

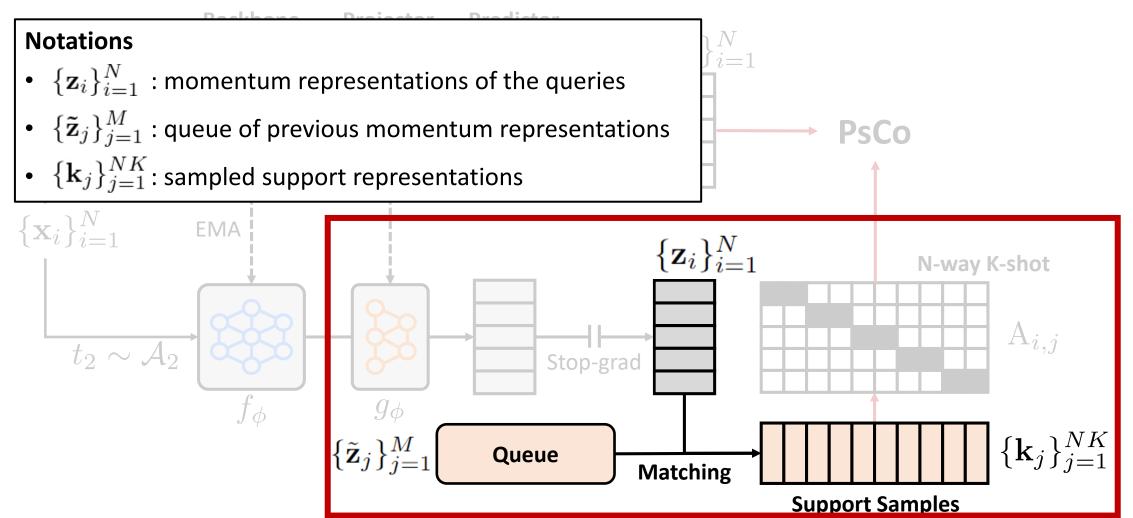
- $\{\mathbf{x}_i\}_{i=1}^N$: query samples for N-way K-shot task
- Select appropriate K-shot support samples from momentum queue


Idea: Construct pseudo-tasks via momentum representations and apply contrastive learning

- $\{\mathbf{x}_i\}_{i=1}^N$: **query** samples for **N-way K-shot** task
- Select appropriate K-shot support samples from momentum queue
- Supervised contrastive learning for pseudo-labeled tasks: Pseudo-supervised Contrast (PsCo)

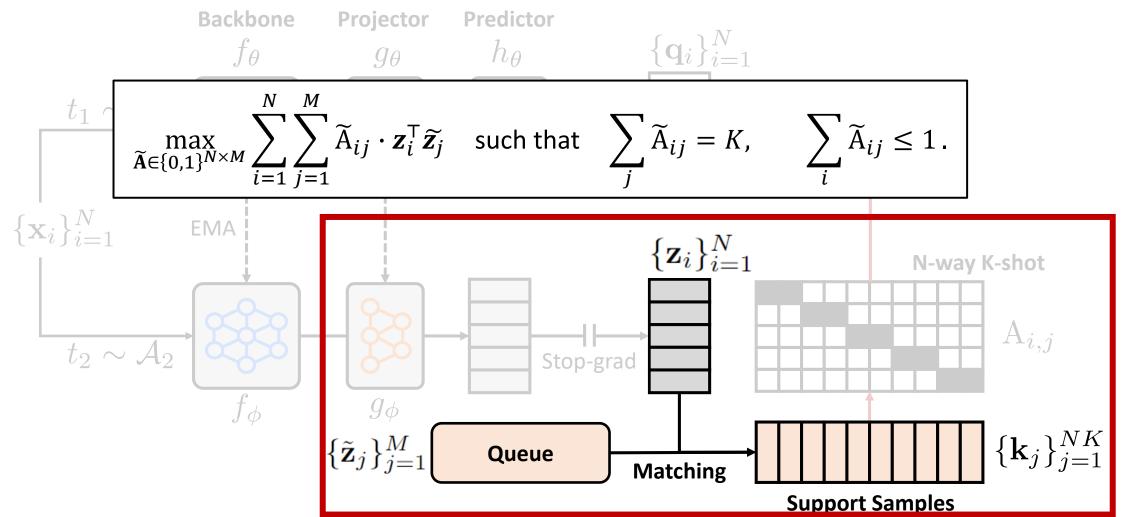

Step 1: Compute query representations

Use strong augmentations and online encoder


Step 2: Compute momentum representations of queries

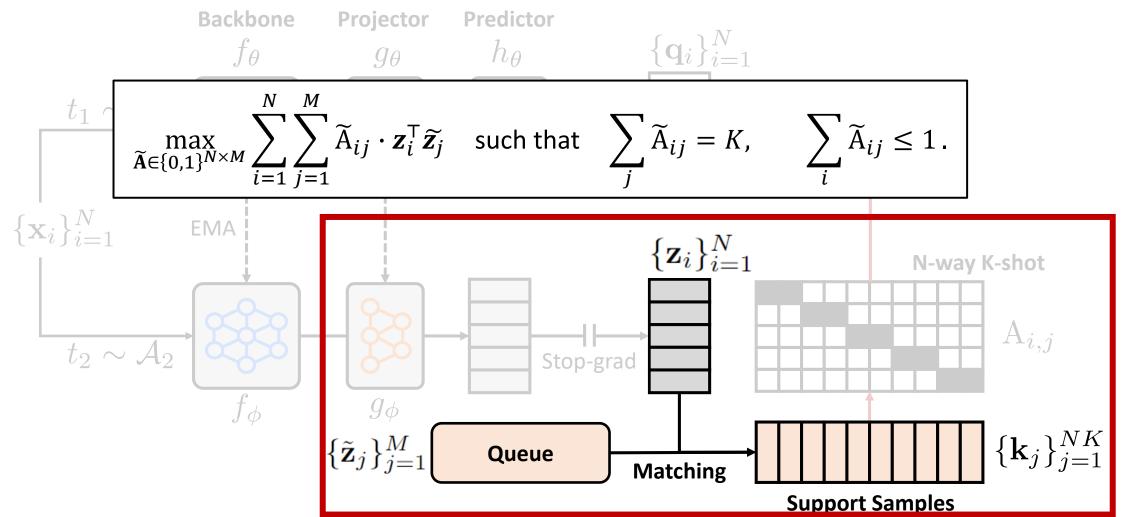
Use weak augmentations (to find an accurate pseudo-label) and momentum encoder

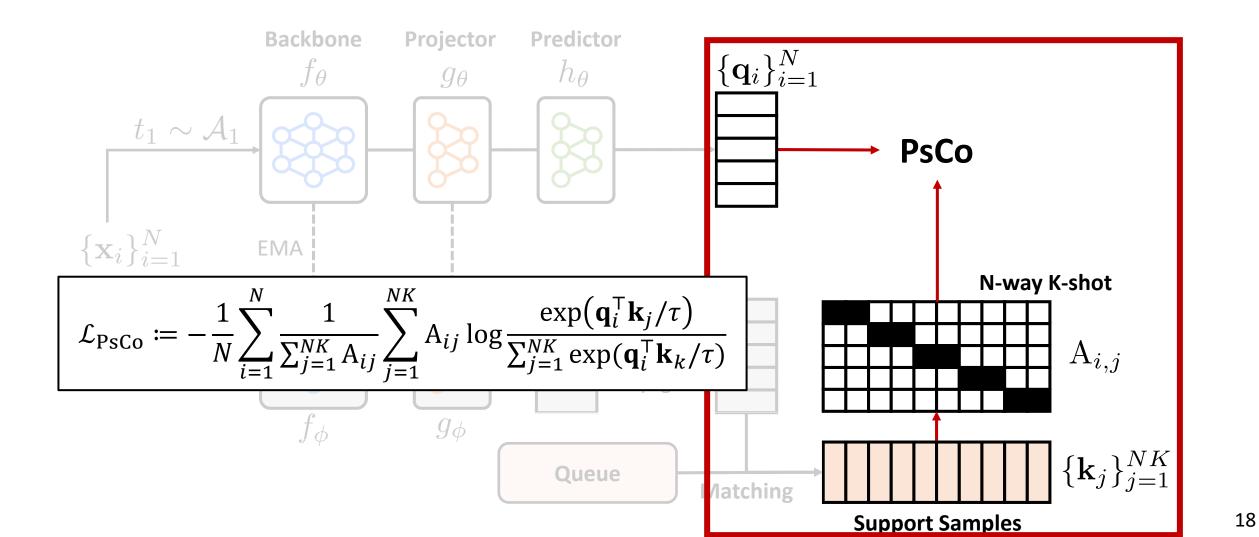
Step 3: Sample support representations from Queue via a matching algorithm


Use <u>momentum queue</u> with <u>matching</u> algorithm (Sinkhorn-Knopp + Top-k sampling)

15

Step 3: Sample support representations from Queue via a matching algorithm

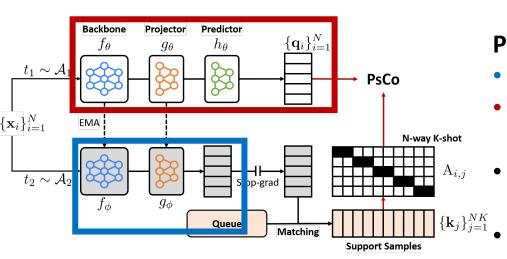

• Matching: How to sample supports that are <u>semantically similar to queries</u> while <u>all samples are different</u>?


16

Step 3: Sample support representations from Queue via a matching algorithm

• <u>Sinkhorn-Knopp + Top-k sampling</u>

Step 4: Meta-training a pseudo few-shot task via supervised contrastive learning



Step 5: Meta-testing with prototypes (i.e., average of support representations)

$$\mathcal{L}_{PsCo} = -\frac{1}{N} \sum_{i} \frac{1}{\tau_{PsCo}} \mathbf{q}_{i}^{\top} \left(\frac{1}{K} \sum_{j} \mathbf{A}_{i,j} \mathbf{z}_{j} \right) + \text{term not depending on } \mathbf{A}.$$

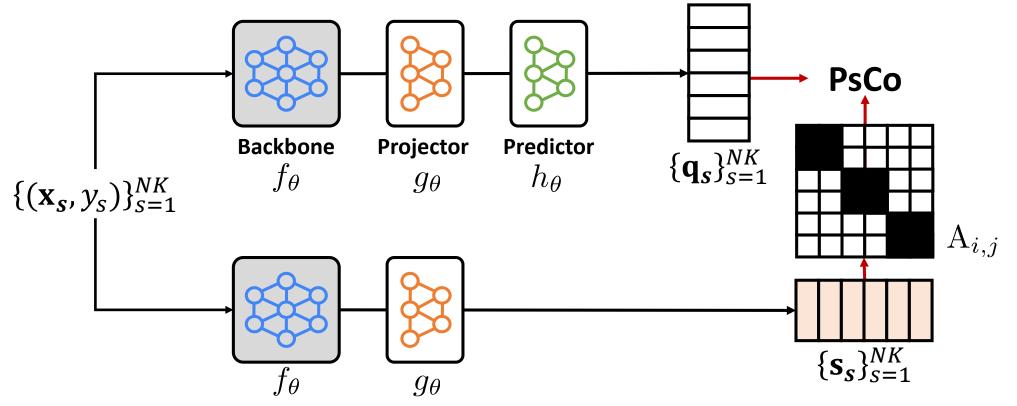
Prototype of supports

Step 5: Meta-testing with prototypes (i.e., average of support representations)

$$\mathcal{L}_{PsCo} = -\frac{1}{N} \sum_{i} \frac{1}{\tau_{PsCo}} \mathbf{q}_{i}^{\top} \left(\frac{1}{K} \sum_{j} A_{i,j} \mathbf{z}_{j} \right) + \text{term not depending on } \mathbf{A}.$$
Prototype of supports

Prediction scheme:

- Support representation: $\mathbf{z}_s := \text{Normalize} \left(g_\theta \circ f_\theta(\mathbf{x}_s) \right)$
- Query representation: $\mathbf{q}_q := \text{Normalize} \left(h_\theta \circ g_\theta \circ f_\theta(\mathbf{x}_q) \right)$


$$\hat{y} := \arg \max_y \mathbf{q}_q^\top \mathbf{c}_y$$
 where $\mathbf{c}_y := \operatorname{Normalize}(\sum_s \mathbf{1}_{y_s=y} \cdot \mathbf{z}_s)$

No momentum network here

Step 5: Meta-testing with prototypes (i.e., average of support representations)

Adaptation scheme for cross-domain problems:

- Treat each support sample as a query
- Freeze the backbone f_{θ} and **optimize** only the **projector** g_{θ} and the **predictor** h_{θ}
- E.g., 3-way 2-shot task

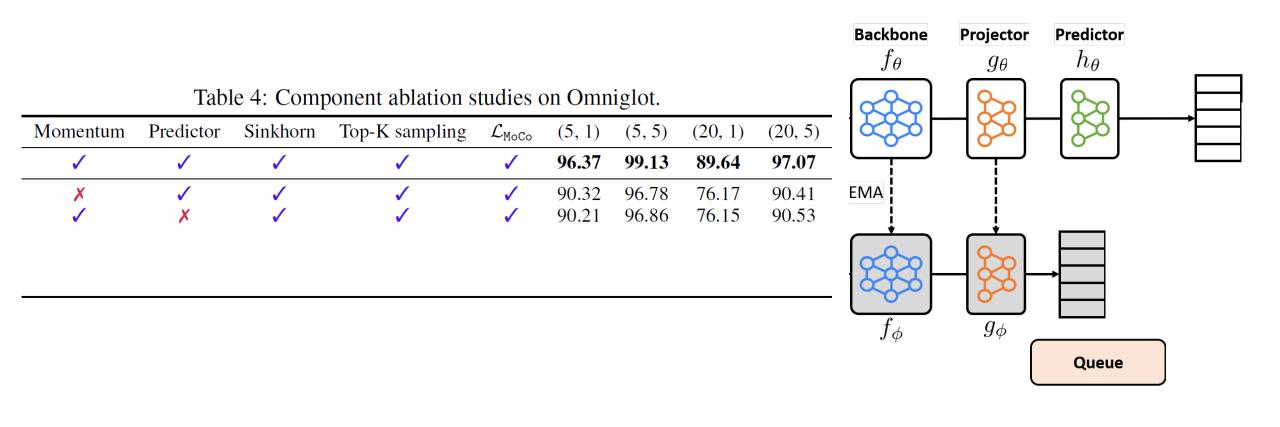
Experiment: Standard Few-shot Classification

- PsCo achieves state-of-the-art performance on standard few-shot benchmarks
 - Omniglot and mini-ImageNet

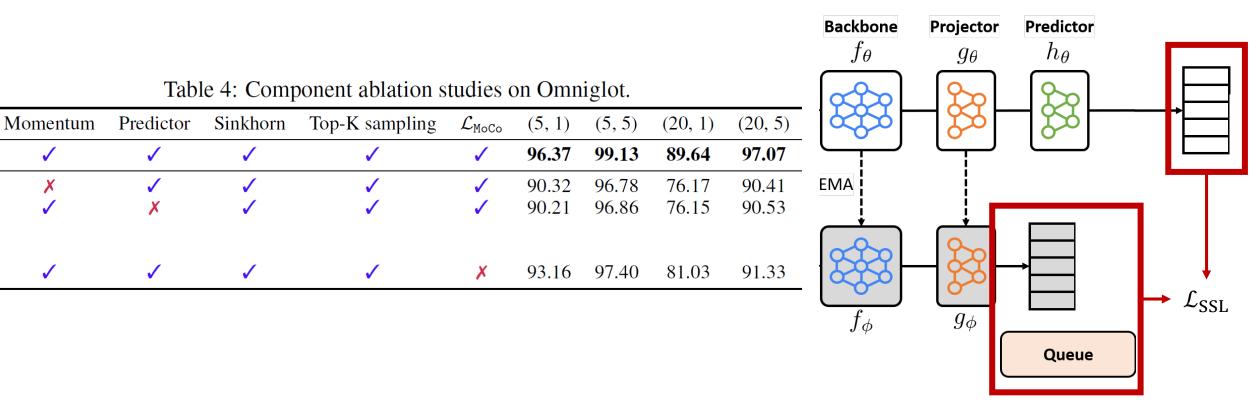
	0	mniglot	(way, sh	ot)	miniImageNet (way, shot)								
Method	(5,1)	(5,5)	(20,1)	(20,5)	(5,1)	(5,5)	(5,20)	(5,50)					
Training from Scratch	52.50	74.78	24.91	47.62	27.59	38.48	51.53	59.63					
Unsupervised meta-learning													
CACTUs-MAML	68.84	87.78	48.09	73.36	39.90	53.97	63.84	69.64					
CACTUs-ProtoNets	68.12	83.58	47.75	66.27	39.18	53.36	61.54	63.55					
UMTRA	83.80	95.43	74.25	92.12	39.93	50.73	61.11	67.15					
LASIUM-MAML	83.26	95.29	-	-	40.19	54.56	65.17	69.13					
LASIUM-ProtoNets	80.15	91.10	-	-	40.05	52.53	61.09	64.89					
Meta-GMVAE	94.92	97.09	82.21	90.61	42.82	55.73	63.14	68.26					
Meta-SVEBM	91.85	97.21	79.66	92.21	43.38	58.03	67.07	72.28					
PsCo (Ours)	96.37	99.13	89.64	97.07	46.70	63.26	72.22	73.50					
		Self-su	pervised	learning									
SimCLR	92.13	97.06	80.95	91.60	43.35	52.50	61.83	64.85					
MoCo v2	92.66	97.38	82.13	92.35	41.92	50.94	60.23	63.45					
SwAV	93.13	97.32	82.63	92.12	43.24	52.41	61.36	64.52					
Supervised meta-learning													
MAML	94.46	98.83	84.60	96.29	46.81	62.13	71.03	75.54					
ProtoNets	98.35	99.58	95.31	98.81	46.56	62.29	70.05	72.04					

Experiment: Cross-domain Few-shot classification

- PsCo achieves state-of-the-art performance on cross-domain few-shot benchmarks
 - Small-scale experiments (Conv5 pretrained on mini-ImageNet)


(a) Cross-domain few-shot benchmarks similar to miniImageNet.								(b) Cross-domain few-shot benchmarks dissimilar to miniImageNet.										
	С	UB	C	ars	Pla	aces	Pla	ntae			CropDiseases		ses EuroSAT		ISIC		Ch	estX
Method	(5, 5)	(5, 20)	(5, 5)	(5, 20)	(5, 5)	(5, 20)	(5, 5)	(5, 20)		Method	(5, 5)	(5, 20)	(5, 5)	(5, 20)	(5, 5)	(5, 20)	(5, 5)	(5, 20)
Unsupervised meta-learning							ĺ	Unsupervised meta-learning										
Meta-GMVAE	47.48	54.08	31.39	38.36	57.70	65.08	38.27	45.02		Meta-GMVAE	73.56	81.22	73.83	80.11	33.48	39.48	23.23	26.26
Meta-SVEBM	45.50	54.61	34.27	46.23	51.27	61.09	38.12	46.22		Meta-SVEBM	71.82	83.13	70.83	80.21	38.85	48.43	26.26	28.91
PsCo (Ours)	57.38	68.58	44.01	57.50	63.60	73.95	52.72	64.53		PsCo (Ours)	88.24	94.95	81.08	87.65	44.00	54.59	24.78	27.69
		Se	lf-superv	ised learn	ning				ĺ	Self-supervised learning								
SimCLR	52.11	61.89	37.40	50.05	60.10	69.93	43.42	54.92		SimCLR	79.90	88.73	79.14	85.05	42.83	51.35	25.14	29.21
MoCo v2	53.23	62.81	38.65	51.77	59.09	69.08	43.97	55.45		MoCo v2	80.96	89.85	79.94	86.16	43.43	52.14	25.24	29.19
SwAV	51.58	61.38	36.85	50.03	59.57	69.70	42.68	54.03		SwAV	80.15	89.24	79.31	85.62	43.21	51.99	24.99	28.57
Supervised meta-learning						ĺ	Supervised meta-learning											
MAML	56.57	64.17	41.17	48.82	60.05	67.54	47.33	54.86		MAML	77.76	83.24	71.48	76.70	47.34	55.09	22.61	24.25
ProtoNets	56.74	65.03	38.98	47.98	59.39	67.77	45.89	54.29		ProtoNets	76.01	83.64	64.91	70.88	40.62	48.38	23.15	25.72

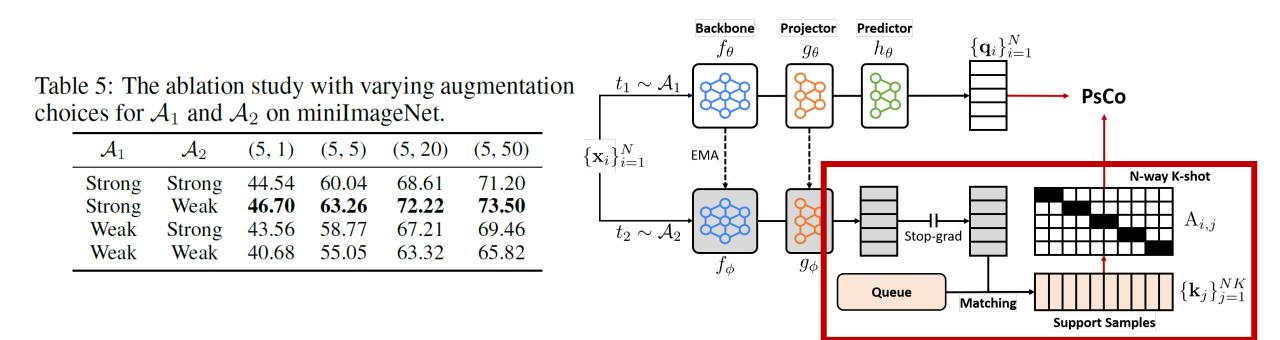
Experiment: Cross-domain Few-shot classification


- PsCo achieves state-of-the-art performance on cross-domain few-shot benchmarks
 - Large-scale experiments (ResNet-50 pretrained on ImageNet)

(a) Cross-domain few-shot benchmarks similar to miniImageNet.									(b) Cross-domain few-shot benchmarks dissimilar to miniImageNet.								
																Ch	estX
Method	N	lethod		CUB	Car	s Pl	aces	Plantae	CropDiseases	Eur	oSAT	ISIC	Ch	estX	5, 20)	(5, 5)	(5, 20)
Meta-GMVAE Meta-SVEBM PsCo (Ours)		MoCo v2 +PsCo (Ours) BYOL +PsCo (Ours)		64.16 76.63	47.6 53.4		.39 3.87	61.36 69.17	82.89 89.85	-	6.96 3.99	38.26 41.6 4		.28	9.48 8.43	23.23 26.26	26.26 28.91
				67.45 82.13	45.7 56.1		5.43 5.80	56.86 71.14	80.82 92.92	-	7.70 5 .33	37.27 42.9 (.15 .05	4.59	24.78	27.69
SimCLR MoCo v2 SwAV	S	upervise	ed	89.13	75.1	5 84	.41	72.91	90.96	85	5.64	43.34	25	.35	1.35 2.14 1.99	25.14 25.24 24.99	29.21 29.19 28.57
Supervised meta-learning							Supervised meta-learning						24.99	20.37			
MAML ProtoNets	56.57 56.74	64.17 65.03	41.17 38.98	48.82 47.98	60.05 59.39	67.54 67.77	47.33 45.89	54.86 54.29	MAML ProtoNets	77.76 76.01	83.24 83.64	71.48 64.91	76.70 70.88	47.34 40.62	55.09 48.38	22.61 23.15	24.25 25.72

- All components are meaningful
 - Architecture choices: Momentum network & predictor enhances pseudo-labeling quality online

- All components are meaningful
 - Architecture choices: Momentum network & predictor enhances pseudo-labeling quality online
 - Incorporating loss of self-supervised learning without additional cost helps to get better representation



- All components are meaningful
 - Architecture choices: Momentum network & predictor enhances pseudo-labeling quality online
 - Incorporating loss of self-supervised learning without additional cost helps to get better representation
 - Sampling strategy: <u>Sinkhorn-Knopp & Top-K sampling</u> helps to sample proper few-shot tasks

Momentum	Predictor	Sinkhorn	Top-K sampling	$\mathcal{L}_{\texttt{MoCo}}$	(5, 1)	(5, 5)	(20, 1)	(20, 5)	correctly sampled shots	overlap between sampled shots
\checkmark	\checkmark	\checkmark	1	1	96.37	99.13	89.64	97.07	8 60	4 (%)
×	 Image: A set of the set of the	1	 Image: A second s	1	90.32	96.78	76.17	90.41		e w/ sinkhorn w/out sinkhorn
✓	×	1	\checkmark	\checkmark	90.21	96.86	76.15	90.53	0 40 Ours	
\checkmark	 Image: A set of the set of the	×	\checkmark	\checkmark	95.81	98.94	88.25	96.57		S o
✓	1	1	×	\checkmark	94.95	98.81	86.32	96.05	0 100 200 300 400 train epochs	0 100 200 300 400 train epochs
	 Image: A second s	1	\checkmark	×	93.16	97.40	81.03	91.33	(a) Pseudo-label quality	(b) Shot overlap ratio

 Table 4: Component ablation studies on Omniglot.

- All components are meaningful
 - Weak augmentation for \mathcal{A}_2 helps to find an accurate pseudo-label assignment matrix A

- New adaptation scheme is more useful in cross-domain
 - It does not cause over-fitting by optimizing only the projector $g_{ heta}$ and the predictor $h_{ heta}$

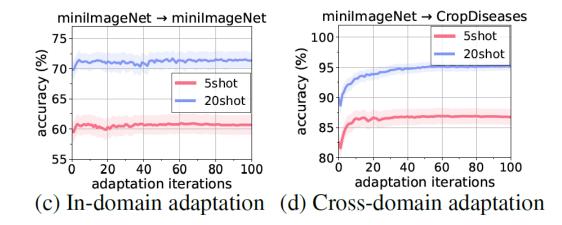


Table 11: Before and after adaptation of PsCo in few-shot classification.

Adaptation	miniImageNet	CUB	Cars	Places	Plantae	CropDiseases	EuroSAT	ISIC	ChestX						
	5-way 5-shot														
×	63.26	55.15	42.27	62.98	48.31	79.75	74.73	41.18	24.54						
1	63.30	57.38	44.01	63.60	52.72	88.24	81.08	44.00	24.78						
	5-way 20-shot														
×	72.22	62.35	51.02	70.85	55.91	84.72	78.96	48.53	27.60						
1	73.00	68.58	57.50	73.95	64.53	94.95	87.65	54.59	27.69						

Conclusion

We propose **PsCo:** an effective unsupervised meta-learning method for few-shot classification

- PsCo constructs diverse few-shot pseudo-tasks without labels utilizing the momentum network and the queue of previous batches in a progressive manner
- We demonstrate the effectiveness of PsCo under various few-shot classification benchmarks
 - PsCo achieves state-of-the-art performance on standard few-shot classification benchmarks
 - PsCo shows superiority on cross-domain few-shot classification benchmarks
 - PsCo is applicable to a large-scale dataset

Thank you for your attention!