Unsupervised Meta-learning via Few-shot Pseudo-supervised Contrastive Learning

Huiwon Jang^A*, Hankook Lee^B*[†], Jinwoo Shin^A

TL; DR. Constructing online pseudo-tasks via momentum representations and applying contrastive learning improves the pseudo-labeling strategy progressively for meta-learning.

Proiector

Introduction

Unsupervised meta-learning learns generalizable knowledge about tasks from unlabeled data. It can solve unseen, yet relevant tasks. However, it requires to construct synthetic tasks to meta-learn without labels:

• Assigning pseudo-labels and applying supervised meta-learning (e.g., CACTUs [1], UMTRA [2])

Research Question 1: How to progressively improve a pseudo-labeling strategy during meta-learning?

• Utilizing generative models for generating synthetic tasks (e.g., LASIUM [3], Meta-GMVAE [4], Meta-SVEBM [5])

Research Question 2: How to construct diverse tasks without generative models so that we can scale the methods into large-scale?

Key idea: Construct pseudo-tasks online via momentum representations and apply contrastive learning.

- Momentum network can improve pseudo-labeling progressively
- Momentum queue can construct diverse tasks in an online manner without generative models

Summary of Contribution

We propose Pseudo-supervised Contrast (PsCo), an effective unsupervised metalearning framework for few-shot classification, which constructs diverse pseudotasks without labels progressively utilizing the momentum network and the queue of previous batches.

Extensive experiments demonstrate that

- **1. PsCo** achieves SotA performance on standard few-shot tasks
- **PsCo** shows superiority on cross-domain few-shot tasks
- **3. PsCo** is applicable to large-scale architectures/datasets

References

- [1] Hsu et al., Unsupervised Learning via Meta-learning, ICLR 2019
- [2] Khodadadeh et al., Unsupervised Meta-learning for Few-shot Image Classification, NeurIPS 2019
- [3] Khodadadeh et al., Unsupervised Meta-learning through Latent-space Interpolation in Generative Models, ICLR 2019
- [4] Lee et al., Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-learning, ICLR 2021
- [5] Kong et al., Unsupervised Meta-learning via Latent Space Energy-based Model of Symbol Vector Coupling, NeurIPSW 2021
- [6] He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020
- [7] Khosla et al., Supervised Contrastive Learning, NeurIPS 2020

^AKorea Advanced Institute of Science and Technology (KAIST), ^BLG AI Research

Method

 $t_1 \sim \mathcal{A}$

 $t_2 \sim \mathcal{A}_2$

 $\{\mathbf{x}_i\}_{i=1}^N$

Backbone

EMA

Notation. $\{x_i\}_{i=1}^N$ is a current mini-batch, t_1 is strong augmentation, t_2 is weak augmentation, θ is online encoder, and ϕ is momentum encoder.

 $\{\mathbf{q}_i\}_{i=1}^N$

PsCo

N-way K-shot

Predictor

32

Stop-grad

Matching Support Samples

- How to construct online pseudo-task when meta-training?
- Queries: $\{x_i\}_{i=1}^N$, where query representations are $\{\mathbf{q}_i\}_{i=1}^N$
- Supports: Sample from momentum queue $\{\tilde{z}_i\}_{i=1}^M$, which are semantically similar to queries while all sampled supports are different. It is obtained by solving the following optimization problem via a matching algorithm:

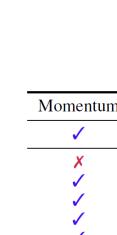
Step 1:
$$\max_{\widetilde{A} \in \{0,1\}^{N \times M}} \sum_{i=1}^{N} \sum_{j=1}^{M} \widetilde{A}_{i,j} \cdot \mathbf{z}_{i}^{T} \widetilde{\mathbf{z}}_{j} \quad \text{such that} \quad \sum_{j} \widetilde{A}_{i,j} = K, \qquad \sum_{i} \widetilde{A}_{i,j} \leq 1$$

Step 2: $\mathbf{A} \leftarrow \operatorname{TopK}(\widetilde{\mathbf{A}}^{*})$

Meta-training. Our objective for learning pseudo-tasks is as follows:

$$\mathcal{L}_{PsCo} \coloneqq -\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\sum_{j=1}^{NK} A_{ij}} \sum_{j=1}^{NK} A_{ij} \log \frac{\exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_j / \tau)}{\sum_{j=1}^{NK} \exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_k / \tau)}$$

where \mathbf{k}_i are support representations sampled by the matching algorithm and $A \in \{0,1\}^{N \times NK}$ is pseudo-label assignment matrix.


Meta-test. We use prototypes of supports for prediction:

 $\hat{y} \coloneqq \operatorname{argmax}_{y} \mathbf{q}_{q}^{T} \boldsymbol{c}_{y}$ where $\boldsymbol{c}_{y} \coloneqq \operatorname{Normalize} \left(\sum_{s} \mathbf{1}_{y_{s}=y} \cdot \boldsymbol{z}_{s} \right)$ where \boldsymbol{z}_{s} , \mathbf{q}_{q} are support and query representations, respectively, Inspired by the following interpretation of \mathcal{L}_{PsCO} :

$$\mathcal{L}_{\mathsf{PsCo}} = -\frac{1}{N} \sum_{i} \frac{1}{\tau_{\mathsf{PsCo}}} \boldsymbol{q}_{i}^{T} \left(\frac{1}{K} \sum_{j} A_{i,j} \boldsymbol{z}_{j} \right) + \text{term not depending on } \boldsymbol{A}$$

Adaptation scheme for cross-domain few-shot classification:

- Treat each support sample as a query
- Freeze the backbone and fine-tune only the projector and the predictor

Meta-GMVAE

SimCLR

MoCo v2

SwAV

MAML

ProtoNets

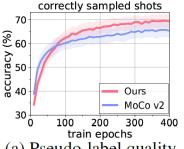
*Equal contribution +Work done at KAIST

Experiment

PsCo achieves state-of-the-art performance on standard (first table) and crossdomain (second table) few-shot benchmarks (ConvNet).

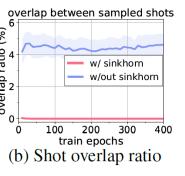
	Omniglot (way, shot)				miniImageNet (way, shot)				
Method	(5,1)	(5,5)	(20,1)	(20,5)	(5,1)	(5,5)	(5,20)	(5,50)	
Training from Scratch	52.50	74.78	24.91	47.62	27.59	38.48	51.53	59.63	
Unsupervised meta-learning									
CACTUs-MAML	68.84	87.78	48.09	73.36	39.90	53.97	63.84	69.64	
CACTUs-ProtoNets	68.12	83.58	47.75	66.27	39.18	53.36	61.54	63.55	
UMTRA	83.80	95.43	74.25	92.12	39.93	50.73	61.11	67.15	
LASIUM-MAML	83.26	95.29	-	-	40.19	54.56	65.17	69.13	
LASIUM-ProtoNets	80.15	91.10	-	-	40.05	52.53	61.09	64.89	
Meta-GMVAE	94.92	97.09	82.21	90.61	42.82	55.73	63.14	68.26	
Meta-SVEBM	91.85	97.21	79.66	92.21	43.38	58.03	67.07	72.28	
PsCo (Ours)	96.37	99.13	89.64	97.07	46.70	63.26	72.22	73.50	
Self-supervised learning									
SimCLR	92.13	97.06	80.95	91.60	43.35	52.50	61.83	64.85	
MoCo v2	92.66	97.38	82.13	92.35	41.92	50.94	60.23	63.45	
SwAV	93.13	97.32	82.63	92.12	43.24	52.41	61.36	64.52	
Supervised meta-learning									
MAML	94.46	98.83	84.60	96.29	46.81	62.13	71.03	75.54	
ProtoNets	98.35	99.58	95.31	98.81	46.56	62.29	70.05	72.04	

(a) Cross-domain few-shot benchmarks similar to miniImageNet

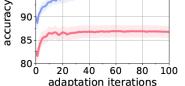

(b) Cross-domain few-shot benchmarks dissimilar to miniImageNet. CUB Plantae ChestX CropDiseases EuroSAT (5,5) (5,20) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20)(5,5) (5,20) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20)Method Unsupervised meta-learning Insupervised meta-learning 47.48 54.08 31.39 38.36 65.08 38.27 45.02 Meta-GMVAE 73.56 81.22 73.83 23.23 26.26 80.1133.48 39.48 46.23 51.27 46.22 45.50 54.61 34.27 61.09 38.12 71.82 83.13 70.83 **26.26** 28.91 Meta-SVEBM 80.21 38.85 48.43 44.01 57.50 63.60 73.95 52.72 64.53 PsCo (Ours) 88.24 94.95 81.08 87.65 44.00 24.78 27.69 Self-supervised learning Self-supervised learning 52.11 61.89 37.40 50.05 60.10 69.93 43.42 54.92 79.14 85.05 42.83 25.14 **29.21** 53.23 62.81 38.65 51.77 59.09 69.08 43.97 55.45 86.16 43.43 25.24 29.19 MoCo v2 89.85 79.94 52.14 51.58 61.38 36.85 50.03 59.57 69.70 42.68 54.03 80.15 89.24 79.31 85.62 43.21 51.99 24.99 28.57 SwAV Supervised meta-learning Supervised meta-learning 56.57 64.17 41.17 48.82 60.05 67.54 47.33 54.86 MAML 77.76 83.24 71.48 76.70 47.34 55.09 22.61 24.25 56.74 65.03 38.98 47.98 59.39 67.77 45.89 54.29 ProtoNets 76.01 83.64 64.91 70.88 40.62 48.38 23.15 25.72

PsCo can be scale into large-scale (ResNet-50 ImageNet-pretrained).

Method	CUB	Cars	Places	Plantae	CropDiseases	EuroSAT	ISIC	ChestX
MoCo v2	64.16	47.67	81.39	61.36	82.89	76.96	38.26	24.28 23.60
+PsCo (Ours)	76.63	53.45	83.87	69.17	89.85	83.99	41.64	
BYOL	67.45	45.74	75.43	56.86	80.82	77.70	37.27	24.15
+PsCo (Ours)	82.13	56.19	83.80	71.14	92.92	85.33	42.90	26.05
Supervised	89.13	75.15	84.41	72.91	90.96	85.64	43.34	25.35


Component ablation shows the importance of each components.

n	Predictor	Sinkhorn	Top-K sampling	$\mathcal{L}_{\texttt{MoCo}}$	(5, 1)	(5, 5)	(20, 1)	(20, 5)
	1	✓	\checkmark	✓	96.37	99.13	89.64	97.07
	1	1	 Image: A second s	1	90.32	96.78	76.17	90.41
	×	1	\checkmark	1	90.21	96.86	76.15	90.53
	1	×	\checkmark	1	95.81	98.94	88.25	96.57
	1	1	×	1	94.95	98.81	86.32	96.05
	1	1	\checkmark	×	93.16	97.40	81.03	91.33


(a) Pseudo-label quality

5shot 20 40 60 80 100

New adaptation scheme is more useful in cross-domain.

miniImageNet	CUB	Cars	Places	Plantae	CropDiseases	EuroSAT	ISIC	ChestX		
5-way 5-shot										
63.26	55.15	42.27	62.98	48.31	79.75	74.73	41.18	24.54		
63.30	57.38	44.01	63.60	52.72	88.24	81.08	44.00	24.78		
5-way 20-shot										
72.22	62.35	51.02	70.85	55.91	84.72	78.96	48.53	27.60		
73.00	68.58	57.50	73.95	64.53	94.95	87.65	54.59	27.69		

- 20sho

) In-domain adaptation (d) Cross-domain adaptation