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Importance of modality-agnostic self-supervised learning

* Modality-agnostic SSL learns representation without modality-specific inductive bias
» SSL has achieved a remarkable success in various fields: Vision (SimCLR, MAE), NLP (BERT, GPT), ...
* Benefit: We can apply SSL approach to pretrain new & long tail of modality or domain
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(Motivation) Masked Auto-Encoder

* MAE is a powerful SSL framework for various domains

* MAE do not need any domain-specific inductive bias
* Not only image domain (MAE), but also Language (BERT), Tabular (Vime), Audio (AudioMAE)
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Research Questions
Is MAE indeed a modality-agnostic with a proper decoder?
How can we improve MAE in a modality-agnostic manner?

[1] He et al., Masked Autoencoders are Scalable Vision Learners, CVPR 2022
[2] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019



(Motivation) Masked Auto-Encoder

=) Is MAE indeed a modality-agnostic with a proper decoder?

Observation: MAE with a proper decoder size outperforms previous approaches
* Improving MAE must be a promising direction to be better modality-agnostic SSL

decoder size  EuroSAT Pfam

LibriSpeech

prev. best 87.4 4.7 60.2
0 86.3 44.] 33.3
2 86.7 61.4 68.1
4 87.4 61.3 64.1
6 86.7 61.4 74.1
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(Motivation) Masked Auto-Encoder

~)How can we improve MAE in a modality-agnostic manner?

MAE can be interpreted as an amortization-based meta-learner
* We can improve MAE by leveraging the advances of meta-learning
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Method: Meta-learned Masked Auto-Encoder (MetaMAE)

=)How can we improve MAE in a modality-agnostic manner?
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* |dea: Reconstruction from adapted latent representations + Task contrast
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Method: Meta-learned Masked Auto-Encoder (MetaMAE)

* |dea: Reconstruction from adapted latent representations + Task contrast
* We assume that tokenized x is a few-shot prediction task
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Method: Meta-learned Masked Auto-Encoder (MetaMAE)

* |dea: Reconstruction from adapted latent representations + Task contrast
* We assume that tokenized x is a few-shot prediction task
* Latent adaptation via Gradient-based meta-learning to predict qgueries
* Zx = 2Zx — aVz, Lyap(6, ¢; Sx)
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Method: Meta-learned Masked Auto-Encoder (MetaMAE)

* |dea: Reconstruction from adapted latent representations + Task contrast
* We assume that tokenized x is a few-shot prediction task
* Latent adaptation via Gradient-based meta-learning to predict qgueries
* Task contrastive learning between task-agnostic and task-specific representations
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Experiment: Setup

e DABS 1.0 and 2.0 benchmarks

* Various modalities: time-series, tabular, multi-spectral image, token, speech, and RGB image

* Various downstream tasks, including cross-domain tasks

* Multi-modal tasks to verify the possibility for tackling unified SSL
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CGCAGATTCTTTTTCATTCAGCAT
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TGAACAGGCGGCCTCACAGGTGTG
GCAGCCGATACAGAGAGTGGAGTC
AGCAATTACAAAACGATTCACCAG
GCATTCCTCAGGTGATTGTCATTT
TTGACGAAAACATGCCGTTGAAAT
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Experiment: In-domain linear evaluation

 MetaMAE achieves state-of-the-art performance on in-domain linear evaluation

Modality Time-series Tabular MS Image Token Speech  RGB Image
Dataset PAMAP2 HIGGS EuroSAT  Genom  Pfam Libri WaferMap
Random initialization
Baseline 69.8° 54.81 62.31 3727 30.1 17.1° 77.71

Self-supervised learning Framework
e-Mix 80.1 65.7 87.4 40.5 31.3 60.2 92.6
ShED 85.2 68.01 61.57 33.6 547 348 92.41
Capri - - 67.41 2357 274 254 92.57
MAE 85.37 70.07 86.37 53.6 447  46.0 93.9f
MetaMAE 89.3 71.5 88.5 69.4 62.3 79.8 95.5

 MetaMAE achieves state-of-the-art performance on vision-language

Table 3: Linear classification accuracy (%) pretrained on a vision-language dataset, MSCOCO.

SSL Framework
Pretrain data  Transfer data Baseline e-Mix ShED Capnn MAE MetaMAE
VQA 534 57.6 53.1 52.9 54.2 69.7

MSCOCO Mismatched-caption 49.8 50.1 506 49.6 493 70.5




Experiment: Cross-domain linear evaluation

 MetaMAE achieves state-of-the-art performance on cross-domain linear evaluation
* MetaMAE can be transferred to various cross-domain transfer learning scenarios across the modalities

SSL Framework
Pretrain data  Transfer data Baseline e-Mix ShED Capri MAE MetaMAE

Genomics Genomics-O0D 8.6 0.7 1.3 5.5 22.2 37.2
SCOP 8.0 5.7 10.7 2.0 7.9 11.8
Pfam Secondary 524 537  61.6 495 625 65.9
Stability 0.31 039 053 026 040 0.53
Fluorescence 0.04 0.20 0.27 0.06 0.06 0.31
Audio MNIST 33.17 804" 6737 536  45.1 89.5
Fluent Loc 62.1" 60.9° 60.2" 598 617 66.7
LibriSpeech Fluent Act 26.2: 29.9: 30.5: 28.3 268 38.4
Fluent Obj 30.1 399" 394" 331 320 49.3
Google Speech 49" 19.2" 207" 137 9.5 46.8
VoxCelebl 0.6 24" 2.8" 1.6 1.6 7.4
CIFAR-10 24.2" 394" 39.6° 487  46.0 59.2
CUB 1.6" 3.9 3.0° 3.7 3.1 6.3
ImageNet32 VGG Flowers 90" 260" 130" 186 222 36.3
DTD 7.4 8.8 18.4 147 142 20.9
Traffic Sign 14.3" 65.1" 2757 280 320 67.1

Aircraft 27" 10.2" 5.6 6.4 5.9 16.4




Conclusion

We propose MetaMAE: a novel and effective modality-agnostic SSL framework
* We interpret mask reconstruction task of MAE as a meta-learning
to suggest an integration with advanced modality-agnostic meta-learning methods

* We show that MetaMAE significantly improves the performance across a diverse range of modalities
* We verify the possibility of MetaMAE for tackling unified multi-modal SSL

Thank you for your attention!
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