

Modality-agnostic Self-supervised Learning with Meta-learned Masked Auto-encoder

<u>Huiwon Jang</u>^{A*} Jihoon Tack^{A*} Daewon Choi^B Jongheon Jeong^A Jinwoo Shin^A

^AKorea Advanced Institute of Science and Technology (KAIST) ^BKorea University

Importance of modality-agnostic self-supervised learning

- Modality-agnostic SSL learns representation without modality-specific inductive bias
 - SSL has achieved a remarkable success in various fields: Vision (SimCLR, MAE), NLP (BERT, GPT), ...
 - Benefit: We can apply SSL approach to pretrain new & long tail of modality or domain

(Motivation) Masked Auto-Encoder

- MAE is a powerful SSL framework for various domains
 - MAE do not need any domain-specific inductive bias
 - Not only image domain (MAE), but also Language (BERT), Tabular (Vime), Audio (AudioMAE)

BERT [2] (Modality: Language)

Research Questions

[1] He et al., Masked Autoencoders are Scalable Vision Learners, CVPR 2022[2] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019

(Motivation) Masked Auto-Encoder

- S Is MAE indeed a modality-agnostic with a proper decoder?
- **Observation:** MAE with a **proper decoder size** outperforms previous approaches
 - Improving MAE must be a promising direction to be better modality-agnostic SSL

decoder size	EuroSAT	Pfam	LibriSpeech
prev. best	87.4	54.7	60.2
0	86.3	44.7	33.3
2	86.7	61.4	68.1
4	87.4	61.3	64.1
6	86.7	61.4	74.1

(Motivation) Masked Auto-Encoder

- How can we improve MAE in a modality-agnostic manner?
 - MAE can be interpreted as an amortization-based meta-learner
 - We can improve MAE by leveraging the advances of meta-learning

Bow can we **improve MAE** in a modality-agnostic manner?

• Idea: Reconstruction from adapted latent representations + Task contrast

- Idea: Reconstruction from adapted latent representations + Task contrast
 - We assume that tokenized **x** is a **few-shot prediction task**

- Idea: Reconstruction from adapted latent representations + Task contrast
 - We assume that tokenized **x** is a **few-shot prediction task**
 - Latent adaptation via Gradient-based meta-learning to predict queries
 - $Z_{\mathbf{X}}^* = Z_{\mathbf{X}} \alpha \nabla_{Z_{\mathbf{X}}} \mathcal{L}_{MAE}(\theta, \phi; \tilde{S}_{\mathbf{X}})$

- Idea: Reconstruction from adapted latent representations + Task contrast
 - We assume that tokenized **x** is a few-shot prediction task
 - Latent adaptation via Gradient-based meta-learning to predict queries
 - Task contrastive learning between task-agnostic and task-specific representations

Experiment: Setup

DABS 1.0 and 2.0 benchmarks

- Various modalities: time-series, tabular, multi-spectral image, token, speech, and RGB image
- Various downstream tasks, including cross-domain tasks
- Multi-modal tasks to verify the possibility for tackling unified SSL

Experiment: In-domain linear evaluation

• MetaMAE achieves state-of-the-art performance on in-domain linear evaluation

Modality	Time-series	Tabular	MS Image	Token		Speech	RGB Image		
Dataset	PAMAP2	HIGGS	EuroSAT	Genom	Pfam	Libri	WaferMap		
Random initialization									
Baseline	69.8 [†]	54.8 [†]	62.3 [†]	37.2 [†]	30.1	17.1^{*}	77.7 [†]		
Self-supervised learning Framework									
e-Mix	80.1	65.7	87.4	40.5	31.3	60.2	92.6		
ShED	85.2	68.0^{\dagger}	61.5 [†]	33.6	54.7	34.8^{*}	92.4 [†]		
Capri	-	-	67.4 [†]	23.5†	27.4	25.4	92.5 [†]		
MAE	85.3 [†]	70.0^{\dagger}	86.3†	53.6	44.7	46.0	93.9 [†]		
MetaMAE	89.3	71.5	88.5	69.4	62.3	79.8	95.5		

• MetaMAE achieves <u>state-of-the-art</u> performance on vision-language

Table 3: Linear classification accuracy (%) pretrained on a vision-language dataset, MSCOCO.

			SSL Framework				
Pretrain data	Transfer data	Baseline	e-Mix	ShED	Capri	MAE	MetaMAE
MSCOCO	VQA Mismatched-caption	53.4 49.8	57.6 50.1	53.1 50.6	52.9 49.6	54.2 49.3	69.7 70.5

Experiment: Cross-domain linear evaluation

- MetaMAE achieves state-of-the-art performance on cross-domain linear evaluation
 - MetaMAE can be transferred to various cross-domain transfer learning scenarios across the modalities

			SSL Framework				
Pretrain data	Transfer data	Baseline	e-Mix	ShED	Capri	MAE	MetaMAE
Genomics	Genomics-OOD	8.6	9.7	7.3	5.5	22.2	37.2
Pfam	SCOP	8.0	5.7	10.7	2.0	7.9	11.8
	Secondary	52.4	53.7	67.6	49.5	62.5	65.9
	Stability	0.31	0.39	0.53	0.26	0.40	0.53
	Fluorescence	0.04	0.20	0.27	0.06	0.06	0.31
LibriSpeech	Audio MNIST	33.1*	80.4 [*]	67.3*	53.6	45.1	89.5
	Fluent Loc	62.1*	60.9 [*]	60.2*	59.8	61.7	66.7
	Fluent Act	26.2*	29.9 [*]	30.5*	28.3	26.8	38.4
	Fluent Obj	30.1*	39.9 [*]	39.4*	33.1	32.0	49.3
	Google Speech	4.9*	19.2 [*]	20.7*	13.7	9.5	46.8
	VoxCeleb1	0.6*	2.4 [*]	2.8*	1.6	1.6	7.4
ImageNet32	CIFAR-10	24.2*	39.4*	39.6*	48.7	46.0	59.2
	CUB	1.6*	3.9*	3.0*	3.7	3.1	6.3
	VGG Flowers	9.0*	26.0*	13.0*	18.6	22.2	36.3
	DTD	7.4*	8.8*	18.4*	14.7	14.2	20.9
	Traffic Sign	14.3*	65.1*	27.5*	28.0	32.0	67.1
	Aircraft	2.7*	10.2*	5.6*	6.4	5.9	16.4

Conclusion

We propose **MetaMAE:** a novel and effective modality-agnostic SSL framework

- We interpret mask reconstruction task of MAE as a meta-learning to suggest an integration with advanced modality-agnostic meta-learning methods
- We show that MetaMAE significantly improves the performance across a diverse range of modalities
- We verify the possibility of MetaMAE for tackling unified multi-modal SSL

Thank you for your attention!