Modality-Agnostic Self-Supervised Learning with Meta-Learned Masked Auto-Encoder

Huiwon Jang^A*, Jihoon Tack^A*, Daewon Choi^B, Jongheon Jeong^A, Jinwoo Shin^A

TL; DR. Interpreting MAE through meta-learning and applying advanced meta-learning techniques to improve unsupervised representation of MAE on arbitrary modalities.

Introduction

Modality-agnostic SSL learns representation without modality-specific inductive bias, allowing pretraining for new domains. They often construct patch-level pretext tasks (ShED) or utilize mask (Capri, MAE) [1-2].

Masked Auto-Encoder (MAE) is a powerful SSL for various domains without needing domain-specific bias: mask prediction task.

• Image (MAE [3]), Language (BERT [4]), Tabular (Met [5]), ...

Research Question 1: Is MAE indeed a modality-agnostic?

Observation: MAE with a proper decoder size outperforms previous approaches

Research Question 2: How to improve MAE in a modality-agnostic manner?

Key idea: Interpreting MAE as an amortization-based meta-learner and leveraging the advances of meta-learning.

- Gradient-based meta-learning on latent to improve the task adaptation process
- Task contrastive learning to better encode the task knowledge

Summary of Contribution

We propose **MetaMAE**, an effective modality-agnostic self-supervised learning framework. We interpret mask reconstruction task of MAE as a meta-learning to suggest an integration with advanced modality-agnostic meta-learning methods. Extensive experiments demonstrate that

- 1. MetaMAE significantly improves the performance of modality-agnostic SSL across a diverse range of modalities
- 2. MetaMAE can extend toward multi-modal scenarios

References

- [1] Tamkin et al., DABS: A Domain-agnostic Benchmark for Self-supervised Learning, NeurIPS Datasets and Benchmarks 2021
- [2] Tamkin et al., DABS 2.0: Improved Datasets and Algorithms for Universal Self Supervision, NeurIPS Datasets and Benchmarks 2022 [3] He et al., Masked Autoencoders are Scalable Vision Learners, CVPR 2022
- [4] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019
- [5] Majmundar et al., Met: Masked encoding for tabular data, Arxiv 2022

^AKAIST, ^BKorea University

Method: MetaMAE

Integration of two advanced meta-learning techniques to enhance MAE:

1. Latent adaptation via gradient-based meta-learning.

Reconstructing $Q_{\mathbf{X}}$ from task-specific latent: $\mathcal{Z}_{\mathbf{X}}^* = \mathcal{Z}_{\mathbf{X}} - \alpha \nabla_{\mathcal{Z}_{\mathbf{X}}} \mathcal{L}_{MAE}(\theta, \phi; \tilde{\mathcal{S}}_{\mathbf{X}})$ where $\tilde{S}_{\mathbf{X}} = S_{\mathbf{X}} \cup \mathcal{N}(S_{\mathbf{X}}; r)$ and $\mathcal{N}(S_{\mathbf{X}}; r)$ bridges the gap between the latents.

•
$$\mathcal{L}_{grad}(\mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{(q, \overline{\mathbf{x}}^{(q)}) \in \mathcal{Q}_{\mathbf{X}}} d(\overline{\mathbf{x}}^{(q)}, g_{\boldsymbol{\phi}}^{(q)}(\mathcal{Z}_{\mathbf{X}}^{*}))$$

2. Task contrastive learning.

Contrastive learning on prototype representation of tasks.

•
$$\mathcal{L}_{task-con}(\mathbf{x}, \theta, \phi) = \frac{1}{2} [l_{con}(\mathbf{z}_{\mathbf{X}}; \mathbf{z}_{\mathbf{X}}^*, \mathcal{T} \setminus \{\mathbf{z}_{\mathbf{X}}^*\}) + l_{con}(\mathbf{z}_{\mathbf{X}}^*; \mathbf{z}_{\mathbf{X}}, \mathcal{T} \setminus \{\mathbf{z}_{\mathbf{X}}\})]$$

where $\mathcal{T} = \bigcup_{\mathbf{X}} \{\mathbf{z}_{\mathbf{X}}, \mathbf{z}_{\mathbf{X}}^*\}$ is a collection of all representations of tasks

Learning objective: $\mathcal{L}_{grad}(\mathbf{x}, \theta, \phi) + \lambda \mathcal{L}_{task-con}(\mathbf{x}, \theta, \phi)$

Pretrain (

MSCOCO

Decoder

*Equal contribution

Experiment

MetaMAE consistently and significantly outperforms prior modality-agnostic SSL in (a) in-domain and (b) cross-domain linear evaluation.

Modality	Time-series	Tabula	r MS Ir	nage	Token		Speech	RGB Image				
Dataset	PAMAP2	HIGGS	S Euros	EuroSAT		Pfam	Libri	WaferMap				
			Random i	initializa	tion							
Baseline	69.8 [†]	54.8 [†]	62.	62.3 [†]		30.1	17.1*	77.7 [†]				
		Self-su	pervised l	ervised learning Framework								
e-Mix	80.1 65.7		87.	87.4		31.3	60.2	92.6				
ShED	85.2	85.2 68.0 [†]		61.5 [†]		54.7	34.8*	92.4 [†]				
Capri	-	-	67.	67.4 [†]		27.4	25.4	92.5 [†]				
MAE	85.3 [†]	70.0 [†]	86.	.3†	53.6	44.7	46.0	93.9 [†]				
MetaMAE	89.3	71.5	88.	.5	69.4	62.3	79.8	95.5				
	SSL Framework											
Pretrain data	Transfer o	lata	Baseline	e-Mix	ShED	Capri	MAE	MetaMAE				
Genomics	Genomics-	OOD	8.6	9.7	7.3	5.5	22.2	37.2				
	SCOP		8.0	5.7	10.7	2.0	7.9	11.8				
Pfam	Secondary		52.4	53.7	67.6	49.5	62.5	65.9				
	Stability		0.31	0.39	0.53	0.26	0.40	0.53				
	Fluorescence		0.04	0.20	0.27	0.06	0.06	0.31				
LibriSpeech	Audio MN	IST	33.1*	80.4*	67.3*	53.6	45.1	89.5				
	Fluent Loc	;	62.1*	60.9^{*}	60.2^{*}	59.8	61.7	66.7				
	Fluent Act		26.2^{*}	29.9^{*}	30.5^{*}	28.3	26.8	38.4				
	Fluent Obj		30.1*	39.9*	39.4*	33.1	32.0	49.3				
	Google Speech		4.9*	19.2^{*}	20.7^{*}	13.7	9.5	46.8				
	Vox Celeb1		0.6^{*}	2.4^{*}	2.8^{*}	1.6	1.6	7.4				
ImageNet32	CIFAR-10		24.2*	39.4*	39.6*	48.7	46.0	59.2				
	CUB		1.6^{*}	3.9*	3.0^{*}	3.7	3.1	6.3				
	VGG Flowers		9.0*	26.0^{*}	13.0^{*}	18.6	22.2	36.3				
	DTD	DTD		8.8^{*}	18.4^{*}	14.7	14.2	20.9				
	Traffic Sig	n	14.3*	65.1^{*}	27.5^{*}	28.0	32.0	67.1				
	Aircraft		2.7^{*}	10.2^{*}	5.6*	6.4	5.9	16.4				

MetaMAE can extend toward multi-modal scenarios

		S	SL Fram				
lata	Transfer data	Baseline	e-Mix	ShED	Capri	MAE	MetaMAE
	VQA Mismatched-caption	53.4 49.8	57.6 50.1	53.1 50.6	52.9 49.6	54.2 49.3	69.7 70.5

Component ablation shows the importance of each components.

Gradient-based	Task contrast	PAMAP2	Genomics	EuroSAT	LibriSpeech	HIGGS	Pfam
×	×	85.3	53.6	86.3	33.3	70.0	44.7
×	×	86.5	65.2	87.4	64.1	70.5	61.3
1	×	88.3	69.4	87.4	64.5	71.1	61.3
✓	✓	89.3	69.4	88.5	79.8	71.5	62.3

Computation-efficiency

(b) PAMAP2

MetaMAE shows robust performance regardless of hyperparameter selection

Modality	Time-series	Tabular	MS Image	Token		Speech	RGB Image	
Dataset	PAMAP2	HIGGS	EuroSAT	Genom	Pfam	Libri	WaferMap	
MetaMAE (sharing 3 HPs)	89.1	71.0	88.5	55.4	62.2	77.1	95.4	
MetaMAE (sharing 2 HPs)	89.1	71.1	88.5	66.7	62.2	77.1	95.4	
MetaMAE (reported)	89.3	71.5	88.5	69.4	62.3	79.8	95.5	